Orientation tuning, but not direction selectivity, is invariant to temporal frequency in primary visual cortex

Bartlett D. Moore IV, Henry J. Alitto, and W. Martin Usrey

Center for Neuroscience, University of California, Davis, Davis, CA 95616

Running Title: Temporal frequency effects in V1

Keywords: area 17, V1, simple cells, complex cells, ferret

Correspondence:
W. Martin Usrey
Center for Neuroscience
University of California, Davis
Davis, CA 95616
530 754-5468 ph
530 757-8827 fax
wmusrey@ucdavis.edu
Abstract

The activity of neurons in primary visual cortex is influenced by the orientation, contrast, and temporal frequency of a visual stimulus. This raises the question of how these stimulus properties interact to shape neuronal responses. While past studies have shown that the bandwidth of orientation tuning is invariant to stimulus contrast, the influence of temporal frequency on orientation-tuning bandwidth is unknown. Here, we investigate the influence of temporal frequency on orientation tuning and direction selectivity in area 17 of ferret visual cortex. For both simple cells and complex cells, measures of orientation-tuning bandwidth (half-width at half-maximum response) are approximately 20-25° across a wide range of temporal frequencies. Thus, cortical neurons display temporal-frequency invariant orientation tuning. In contrast, direction selectivity is typically reduced, and occasionally reverses, at non-preferred temporal frequencies. These results demonstrate that the mechanisms contributing to the generation of orientation tuning and direction selectivity are differentially affected by the temporal frequency of a visual stimulus and support the notion that stability of orientation tuning is an important aspect of visual processing.
Introduction

Orientation tuning is a fundamental property shared by most neurons in primary visual cortex (V1). Despite differences between cortical neurons in terms of their preferred orientation, individual neurons are similar to each other in terms of their tuning bandwidth—a measure reflecting the range of orientations that excite a cell and typically quantified as the half-width at half-height of response peaks in orientation-tuning curves. Across species—including rats, ferrets, cats, tree shrews, and primates—mean orientation-tuning bandwidth is approximately 20-25° (Henry et al. 1974; Schiller et al. 1976; Gilbert 1977; Kato et al. 1978; Orban 1984; Girman et al. 1999; Ringach et al. 2002; Chisum et al. 2003; Usrey et al. 2003; Alitto and Usrey 2004),suggestive that tuning bandwidth is optimized for a similar computational task. Along these lines, studies examining the statistics of natural scenes conclude that the filtering properties of cortical neurons, including orientation tuning, are optimized for conveying information about the natural world (Field 1987; Olshausen and Field 1996; van Hateren and van der Schaaf 1998; Simoncelli and Olshausen 2001; Kording et al. 2004).

Responses of cortical neurons depend not only on the orientation of a visual stimulus, but also on stimulus temporal frequency (Ikeda and Wright 1975; Movshon et al. 1978; Foster et al. 1985; Saul and Humphrey 1992; Hawken et al. 1996; Alitto and Usrey 2004). This raises the question of whether or not temporal frequency affects the bandwidth of orientation tuning. If orientation tuning is optimized for computational processing, then it might be important for neurons to maintain a constant tuning bandwidth across a range of temporal frequencies. However, orientation tuning might broaden with increasing temporal frequency, provided (1) intracortical connections play an important role in sharpening orientation tuning beyond that established by the spatial arrangement of thalamic input (Sillito, 1975; Reid and Alonso 1995;
Gardner et al. 1999; Alonso et al. 2001; Shapley et al. 2004; Usrey et al. 2003; but see Ferster et al. 1996), and (2) responses of cortical neurons are diminished to a greater extent than those of LGN neurons at high temporal frequencies (Hawken et al. 1996; Movshon et al. 1978; Orban et al. 1985; Alitto and Usrey 2004). Alternatively, orientation-tuning bandwidth might decrease with temporal frequency, provided NMDA receptors contribute significantly to thalamocortical processing. Modeling efforts indicate that high temporal frequencies should demodulate NMDA receptors, thereby reducing the f1 of thalamocortical input to cortical neurons relative to the DC input and, as a result, orientation-tuning bandwidth of cortical neurons is predicted to decrease (Krukowski 2000; Krukowski and Miller 2001). Using bar stimuli, Hammond and Smith (1983) reported that orientation tuning neither increases nor decreases with stimulus velocity. Because bar stimuli are not well suited to demodulate NMDA receptors, it remains to be determined whether or not orientation tuning is affected by the temporal frequency of a periodic stimulus, such as drifting gratings. If orientation-tuning bandwidth is indeed invariant to temporal frequency, as has been demonstrated for stimulus contrast (Sclar and Freeman 1982; Skottun et al. 1987; Anderson et al. 2000; Alitto and Usrey 2004), then this finding would indicate that the neuronal circuitry mediating the construction and maintenance of orientation tuning is designed to preserve orientation tuning over a wide range of conditions.

While it is unknown whether or not temporal frequency affects the orientation-tuning of cortical neurons, past work from areas 17 and 18 of adult cats demonstrates that temporal frequency can affect the direction selectivity of cortical neurons (Saul and Humphrey 1992; see also Holub and Morton-Gibson 1981; Reid 1988; Reid et al. 1991; McLean and Palmer 1994; Saul and Feidler 2002). In particular, responses to stimuli drifting in non-preferred directions often increase with temporal frequencies above preferred values. Given the influence of
temporal frequency on direction selectivity, the question remains, does temporal frequency influence orientation tuning?

We performed single-unit recordings from area 17 of ferret visual cortex to determine whether or not orientation tuning and direction selectivity are influenced by the temporal frequency of a visual stimulus. Our results demonstrate that both simple cells and complex cells display temporal-frequency invariant orientation tuning. In contrast, we show that temporal frequencies above and below the preferred temporal frequency often decrease the direction selectivity of cortical neurons and occasionally result in a reversal of direction selectivity. These results are compared to those from other studies and the implications of differential effects of temporal frequency on orientation tuning and direction selectivity are discussed.
Methods

Animal preparation

All surgical and experimental procedures conformed to NIH guidelines and were carried out with the approval of the Animal Care and Use Committee at the University of California, Davis. Ten adult ferrets (Mustela putorius furo, 1-1½ years old) were used in this study. Animals were anesthetized for surgery with an intramuscular injection of ketamine (40 mg/kg) and acepromazine (0.04 mg/kg). A tracheotomy was performed and animals were placed in a stereotaxic apparatus where anesthesia was maintained with 1.0-1.5% isoflurane in oxygen and nitrous oxide (2:1). A thermostatically-controlled heating blanket was used to maintain body temperature at 37° C. Eyes were dilated with 1% atropine sulfate, fitted with contact lenses, and focused on a tangent screen located 76 cm in front of the animal. A midline scalp incision was made and a small craniotomy was made above area 17 of visual cortex. All wound margins were first infused with lidocaine. The temperature, electrocardiogram (ECG), electroencephalogram (EEG) and expired CO₂ were monitored continuously throughout the experiment.

Following completion of all surgical procedures, animals were paralyzed with vecuronium bromide (0.2mg/kg/hr) and artificially ventilated. Proper depth of anesthesia was ensured throughout the experiment by (1) monitoring the EEG for changes in slow-wave/spindle activity, and (2) monitoring the ECG and expired CO₂ for changes associated with a decrease in the depth of anesthesia. If any of these measures indicated a decrease in depth of anesthesia, then the concentration of isoflurane was increased.
Electrophysiological recordings and visual stimuli

Cortical recordings were made from individual neurons in area 17 with receptive fields located between ~ 5-15° eccentric using tungsten in glass electrodes (Alan Ainsworth, London). The laminar location of recording sites was not determined. Neuronal responses were amplified, filtered and recorded to a PC computer equipped with a Power 1401 data acquisition interface and the Spike 2 software package (Cambridge Electronic Design, Cambridge, England). Spike isolation was based on waveform analysis (on-line and off-line) and presence of a refractory period, as indicated by the autocorrelogram (Usrey et al. 2000, 2003).

Visual stimuli were created with a VSG2/5 visual stimulus generator (Cambridge Research Systems, Rochester, England). Stimuli were presented on a gamma-calibrated Sony monitor with a mean luminance of 40 candelas/m². Drifting sinusoidal grating stimuli (75% contrast, optimal spatial frequency) were used to characterize visual responses. Neuronal responses to gratings were used to generate orientation and temporal-frequency tuning curves (described below). Grating stimuli were shown for 4 seconds, followed by 2 seconds of mean gray. Following the period of mean gray, a new grating was shown with a different orientation or temporal frequency. Once a complete sequence of stimuli was presented, the process was repeated 3 to 5 times.

Cell Classification

Using drifting sinusoidal gratings of optimal orientation and spatial frequency, cortical neurons were classified as simple cells or complex cells on the basis of the ratio of the first Fourier coefficient (f1) to mean response (simple cells: f1/mean > 1.0; complex cells: f1/mean < 1.0; see Skottun et al. 1991). Subsequent analysis of neuronal responses was performed using either the cell’s f1 (simple cells) or mean response (complex cells).
Temporal-Frequency Tuning

Temporal-frequency tuning curves were made from neuronal responses of each neuron to drifting sinusoidal gratings (0.5 to 32 Hz; 70% contrast; preferred orientation and spatial frequency). Response curves were interpolated with a cubic spline to determine the preferred temporal frequency. Given each neuron’s response to 0.5 Hz stimuli (< 0.5 Hz for some cells), the lowest temporal frequencies to elicit responses 50% and 20% of maximum (TF(50L) and TF(20L), respectively) were determined. Similarly, given each neuron’s response to 32 Hz stimuli, the highest temporal frequencies to elicit responses 50% and 20% of maximum (TF(50H) and TF(20H), respectively) were determined. Accordingly, neurons with perfect band-pass tuning for temporal frequency would have equal response rates for TF(50L) and TF(50H) and equal response rates for TF(20L) and TF(20H). For neurons with varying degrees of low-pass behavior, response rates for TF(50L) and TF(20L) would always be greater than response rates for TF(50H) and TF(20H), respectively.

To quantify the degree of band-pass vs. low-pass behavior of neurons, a band-pass index was determined using the equation

\[
\text{Band-Pass Index} = \frac{R_{(\text{pref. TF})} - R_{(\text{low TF})}}{R_{(\text{pref. TF})} + R_{(\text{low TF})}}
\]

where \(R_{(\text{pref. TF})}\) is the response at the preferred temporal frequency and \(R_{(\text{low TF})}\) is the response at the lowest temporal frequency examined (generally 0.5 Hz).

For those neurons with responses that dropped to 50% of maximum at temporal frequencies above and below the preferred (\(n=26/32\)), temporal-frequency tuning bandwidth (full-width, in octaves) was determined at half-maximum response.
Orientation Tuning and Direction Selectivity

To determine the influence of temporal frequency on orientation tuning, orientation-tuning curves were generated using gratings drifting at five different temporal frequencies (the preferred temporal frequency, and the TF(20L), TF(50L), TF(50H), and TF(20H); described above) and presented in steps of 12 degrees.

To quantify the effect of temporal frequency on orientation-tuning bandwidth, individual orientation-tuning curves were first fit to a Gaussian distribution,

\[
R(\text{ori}) = K \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right) + \text{baseline}
\]

where \(K\) represents the maximum response rate, \(x\) represents the orientations used, \(\mu\) represents the preferred orientation, \(\sigma\) represents the standard deviation, and baseline is the DC-offset of the Gaussian distribution. This procedure allowed us to estimate the bandwidth of orientation tuning—a value equal to peak half-width at half-height or \(1.17\sigma\). A small subset of neurons (n=6) were encountered that lacked orientation tuning at all temporal frequencies, these neurons were excluded from analysis.

Direction selectivity was assessed for each neuron using a Direction Index,

\[
\text{Direction Index} = \frac{R_1 - R_2}{R_1 + R_2}
\]

where \(R_1\) is equal to the response of a neuron to gratings drifting in the preferred direction and \(R_2\) is equal to the response of a neuron to gratings drifting in the opposite direction (see inset of Figure 6). Orientations corresponding to \(R_1\) and \(R_2\) were determined using the preferred temporal frequency for each neuron. These \(R_1\) and \(R_2\) orientations were then used to determine
R₁ and R₂ values at non-preferred temporal frequencies. In so doing, Direction Index values would be negative if R₂ was greater than R₁ at non-preferred temporal frequencies.

Statistical Analysis

When statistical analysis was required to compare two distributions, we first used Lilliefors modification of the Kolmogorov-Smirnov test to determine if the distributions in question were significantly different from normal distributions of unspecified mean and variance (α= .05). If the distributions were not statistically different from normal, then an analysis of variance (ANOVA) was used to compare the two populations. However, if the populations were statistically different from normal distributions, then a Wilcoxon rank sum test was used. When population means are provided, they are accompanied by the standard error of the mean (sem)
Results

Temporal-frequency tuning in ferret primary visual cortex

We recorded visual responses from 32 neurons in area 17 of ferret visual cortex. For each neuron, temporal-frequency tuning curves were made from responses to drifting sinusoidal gratings presented over a range of temporal frequencies (typically 0.5 Hz or less, up to 32 Hz; see Methods). Examples of temporal-frequency tuning curves from two representative simple cells and two representative complex cells are shown in Figure 1 (A, B, D, E); average tuning curves are shown in Figure 1 (C, F). To determine the extent to which individual neurons displayed band-pass tuning for temporal frequency, we calculated a band-pass index (see Methods). According to this index, values near 1.0 represent neurons with strong band-pass behavior, while values near zero represent neurons with low-pass behavior. Similar to other species, most neurons in ferret visual cortex display band-pass temporal-frequency tuning (Fig. 1G; mean band-pass index = 0.74 +/- 0.01; see Ikeda and Wright 1975; Movshon et al. 1978; Foster et al. 1985; Saul and Humphrey 1992; Hawken et al. 1996; Alitto and Usrey 2004). Among our sample of cortical neurons, simple cells displayed greater band-pass tuning than complex cells (band-pass index = 0.87 +/- 0.05 vs. 0.63 +/- 0.07, respectively; p < 0.01). For those neurons with responses that decreased to 50% of maximum at temporal frequencies below and above the preferred (n=26/32), the mean bandwidth was 2.22 +/- 0.16 octaves (Fig. 1H). Bandwidth values for simple cells were not significantly different from those of complex cells (1.98 +/- 0.13 octaves vs. 2.44 +/- 0.27 octaves, respectively; p = 0.85).

[Figure 1 approximately here]
For each neuron in our sample, there was a preferred temporal frequency that evoked a maximal response. Among our sample of cortical neurons, the mean preferred temporal frequency was 3.47 +/- 0.54 Hz (Fig. 1I). There was not a significant difference in the preferred temporal frequency of simple cells compared to complex cells (3.9 +/- 1.1 Hz vs. 3.1 +/- 0.4 Hz, respectively; p = 0.67). Given each neuron’s response to stimuli drifting at the lowest temporal frequency presented (0.1-0.5 Hz), we identified the two lowest temporal frequencies to evoke a response 50% and 20% of maximum (TF(50L) and TF(20L); see Methods). Similarly, given each neuron’s response to 32 Hz stimuli, we identified the highest temporal frequencies to elicit responses 50% and 20% of maximum (TF(50H) and TF(20H)). Among our sample of neurons, mean temporal frequencies for TF(50L) and TF(20L) were 1.6 +/- 0.14 Hz and 0.93 +/- 0.10 Hz, respectively (Fig. 1I) and mean temporal frequencies for TF(50H) and TF(20H) were 6.68 +/- 0.58 Hz and 10.05 +/- 0.75 Hz, respectively (Fig. 1I).

Influence of temporal frequency on orientation tuning

To investigate the influence of temporal frequency on orientation tuning in primary visual cortex, we made orientation-tuning curves for individual neurons using drifting sinusoidal gratings presented at each neuron’s preferred temporal frequency, the two temporal frequencies below the preferred that corresponded to the TF(50L) and TF(20L), and the two temporal frequencies above the preferred that corresponded to the TF(50H) and TF(20H). Orientation-tuning curves for each neuron at each temporal frequency were then fit by Gaussian functions to determine the orientation tuning half-widths at half-maximum response (Fig. 2A; see Methods). At the preferred temporal frequency for each neuron, orientation tuning half-width was, on average, 24.9° +/- 1.8° (Figure 2B). While orientation tuning half-width was typically less for
simple cells than complex cells (22.9° +/- 1.8° vs. 26.5° +/- 2.7°, respectively), the difference was not significant (p=0.37; but see Alitto and Usrey 2004).

Across our sample of cortical neurons, orientation-tuning bandwidth was not affected by temporal frequency. Figure 3 shows orientation tuning curves from 4 representative neurons at 5 different temporal frequencies: the preferred temporal frequency, the two temporal frequencies below the preferred (TF(50L) and TF(20L)), and the two temporal frequencies above the preferred (TF(50H) and TF(20H)). Although temporal frequency affected the firing rate of these example neurons, orientation-tuning bandwidth remained constant. A quantitative comparison of orientation-tuning bandwidth values at the preferred temporal frequency and the two temporal frequencies below and above the preferred is shown in Figure 4. In each case, data points are mostly located on or near the line of unit slope indicating no effect of temporal frequency on half-width measures. While there is some scatter around the line of unit slope, as a population there was not a significant difference between the mean orientation tuning half-width associated with the preferred temporal frequency (24.9° +/- 1.8°) and the two temporal frequencies below the preferred (TF(50L) = 24.2° +/- 2.0°, p=0.87; TF(20L) = 23.1° +/- 2.3°, p=0.53), or the two temporal frequencies above the preferred (TF(50H) = 22.8° +/- 1.9°, p=0.86; TF(20H) = 20.4° +/- 2.4°, p=0.16).

To address the possibility that temporal-frequency invariant orientation tuning might depend on the temporal-frequency tuning properties of neurons, we sorted neurons into two groups based on their band-pass index (< 0.5 vs. > 0.5; Figure 1G) and re-examined orientation tuning at each of the 5 temporal frequencies (TF(preferred), TF(50L), TF(20L), TF(50H), TF(20H)).
There was not a significant difference in orientation tuning for the two groups of neurons at any of the 5 temporal frequencies (p=0.5, 0.7, 0.5, 0.1, 0.5; data not shown).

Influence of temporal frequency on direction selectivity

For many neurons in our sample, gratings presented at temporal frequencies above or below the preferred temporal frequency often decreased the neuron’s direction selectivity. This effect is exhibited by three of the representative neurons in Figure 3 (A, C, D). Focusing on the neuron in Figure 3A, this neuron preferred gratings drifting at 290° and 110°. At the preferred temporal frequency, 3 Hz, the neuron was strongly direction selective and responded most vigorously to gratings drifting at 290°. As expected, responses to gratings drifting at 290° decreased with temporal frequencies above and below the preferred. In contrast, responses to gratings drifting at 110° increased with temporal frequencies below the preferred and decreased, at a reduced rate, for temporal frequencies above the preferred.

To assess quantitatively the influence of temporal frequency on direction selectivity, we defined the two peaks in an orientation-tuning curve as peak 1 (the peak with the greatest response at the preferred temporal frequency) and peak 2 (the peak, centered ~180° from peak 1, with a reduced response at the preferred temporal frequency). We then compared peak 1 responses vs. peak 2 responses at the preferred temporal frequency, two temporal frequencies below the preferred (TF(50L) and TF(20L)), and two temporal frequencies above the preferred (TF(50H) and TF(20H)). For the scatter plots shown in Figure 5, points along the line of unit slope represent neurons with little or no direction selectivity, while points below unit slope represent neurons with varying degrees of direction selectivity. At the preferred temporal frequency, most neurons are represented with data points well below unity. Accordingly, differences in peak 1 and peak 2 responses were statistically significant (p=0.01).
frequency increased and decreased from the preferred, differences between peak 1 and peak 2 responses decreased progressively (Fig. 5, dashed lines) and were not significantly different from each other at the lowest (TF(20L)) and highest (TF(20H)) temporal frequencies examined (TF(20L), p=0.67; TF(20H), p=0.1; TF(50L), p=0.04; TF(50H), p=0.03).

To assess the influence of temporal frequency on direction selectivity further, we calculated direction index values (see Methods) based on the responses of each neuron to gratings drifting at the preferred temporal frequency and the two temporal frequencies below (TF(50L) and TF(20L)) and above (TF(50H) and TF(20H)) the preferred (Figure 6). At the preferred temporal frequency, direction index values ranged from 0 to 1.0 (mean = 0.48 +/- 0.06), with values near or equal to 1.0 indicating strong direction selectivity and values near zero indicating weak direction selectivity. At temporal frequencies below and above the preferred temporal frequency, direction index values shifted towards zero indicating a decrease in direction selectivity and, in some cases, were negative indicating a reversal in the preferred direction. As a population, direction index values for neurons excited by gratings drifting at the preferred temporal frequency (0.48 +/- 0.06) were significantly greater than values for gratings drifting at TF(20L) (0.08 +/- 0.08; p<0.001) and TF(20H) (0.25 +/- 0.06; p<0.01), and nearly significantly greater than values for gratings drifting at TF(50L) (0.33 +/- 0.07; p=0.1) and TF(50H) (0.32 +/- 0.07, p=0.09). Across the five temporal frequencies examined, direction index values for simple cells were not significantly different from those of complex cells (p>0.05) except at the highest temporal frequency examined TF(20H), where direction index values of complex cells were significantly less than those of simple cells (p=0.03). At each of the non-preferred temporal frequencies, direction indices were also not significantly different for neurons with high band-
pass index values (>0.5) compared to neurons with low band-pass index values (<0.5; data not shown).

[Figure 6 approximately here]

Finally, we wished to determine whether or not the decrease in direction selectivity measured at non-preferred temporal frequencies was a consequence of temporal frequency or the decreased firing rates that accompany non-preferred temporal frequencies. To do so, we quantified the relationship between direction index and firing rate for the subset of cells that displayed direction index values greater than 0.5 at the preferred temporal frequency. A similar analysis was then performed on data collected from a separate set of cells where the contrast of the stimulus was varied to elicit a maximal response and responses approximately 50% and 20% of maximal (Alitto and Usrey 2004). As shown in Figure 7, the relationship between firing rate and direction selectivity was significantly different for cells under the two conditions (p=0.008). Specifically, while direction selectivity decreased at reduced firing rates when temporal frequency was varied, it generally remained constant or increased slightly at reduced firing rates when contrast was varied. This latter finding has also been reported for neurons in cat visual cortex (Peterson and Freeman 2003). Thus, the reduced firing rate that accompanies non-preferred temporal frequencies does not, in itself, appear to contribute to the reduction in direction selectivity.

[Figure 7 approximately here]
Discussion

The goal of this study was to determine the influence of temporal frequency on orientation tuning and direction selectivity in ferret primary visual cortex. Our results show that orientation tuning is invariant to temporal frequency for both simple cells and complex cells. In contrast, direction selectivity is often reduced, and occasionally reverses, at non-preferred temporal frequencies. In the sections below, we compare our results to those of previous studies and consider their functional implications for visual processing.

Temporal-frequency tuning from retina to cortex

In cats and monkeys, neurons along the visual pathway—from retina to primary visual cortex—display characteristic shifts in their temporal-frequency tuning properties. Most notable of these is a decrease in both the preferred temporal frequency and high temporal-frequency cutoff of cortical neurons compared to retinal ganglion cells and LGN neurons (Movshon et al. 1978; Derrington and Lennie 1984; Foster et al. 1985; Orban et al. 1985; Lee et al. 1989; Benardete et al. 1992; Mukherjee and Kaplan 1995; Hawken et al. 1996; O’Keefe et al. 1998; Usrey and Reid 2000). This shift in temporal-frequency tuning, or low-pass filtering, is also present in ferrets, where a recent study found the high temporal-frequency cutoff, TF(50H), of cortical neurons to be significantly less than that of LGN neurons (5.6 +/- 0.5 Hz vs. 19.8 +/-2.9 Hz, respectively; Alitto and Usrey, 2004). Although a somewhat greater TF(50H) is reported for ferret cortical neurons in the present study (8.3 +/- 1.0 Hz), this value is still significantly less than that reported for LGN neurons.

Within primary visual cortex of cats and monkeys, simple cells and complex cells generally have similar preferred temporal frequencies (e.g., cat: 2.8 +/-0.3 Hz vs. 3.4 +/- 0.5 Hz,
respectively, Saul and Humphrey 1992; macaque monkey: 9.6 +/- 7.5 Hz vs. 11.2 +/- 7.5 Hz, respectively, Hawken et al. 1996). In the ferret, our results show that simple cells and complex cells also have similar preferred temporal frequencies (3.9 +/- 1.1 Hz vs. 3.1 +/- 0.4, respectively). It is worth noting that our sample of orientation tuned cortical neurons (n=32) almost certainly does not include all cell types from all layers, thus differences may exist in the tuning properties of certain classes of neurons. Along these lines, a small population of visually responsive neurons was encountered that lacked orientation tuning (6/38, see also Bullier and Henry 1979; Hirsch et al., 2003; Usrey et al., 2003). These neurons were therefore excluded from further analysis.

Effects of temporal frequency on orientation tuning and direction selectivity

Orientation tuning is similar across species. In cat (Gilbert 1977; Kato et al. 1978), macaque monkey (Henry et al. 1974; Schiller et al. 1976; De Valois et al. 1982; Ringach et al. 2002), tree shrew (Chisum et al. 2003), rat (Girman et al. 1999) and ferret (present study; see also Usrey et al. 2003; Alitto and Usrey, 2004), cortical neurons display a range of tuning bandwidths with most neurons, particularly those in the output layers, having a bandwidth near the mean, approximately 25° (half-width at half-maximum response). This similarity of tuning bandwidth is rather remarkable when one considers the many differences in cortical processing between species, including differences in the cortical layer where orientation tuning emerges (e.g. layer 4 in cats and ferrets, layers 2/3 in tree shrews; Hubel and Wiesel 1962; Fitzpatrick 1996; Usrey et al. 2003), distinct patterns of intrinsic circuits (Fitzpatrick 1996; Callaway 1998; Binzegger et al. 2004), and dramatic differences in area occupied by primary visual cortex (e.g. macaque V1: 1320 mm², Daniel and Whitteridge 1961; tree shrew V1: ~ 60 mm², estimated from Tigges and Shantha 1969). Even within species, orientation tuning is constant and varies
little with eccentricity or mean luminance (Schiller et al. 1976; Wilson and Sherman 1976; Bisti et al. 1977; see also Beaton and Blakemore 1981). This similarity is further emphasized when orientation tuning is examined under different levels of stimulus contrast. In all species examined, neurons in primary visual cortex display contrast-invariant orientation tuning, whereby orientation-tuning bandwidth remains constant (~25°, on average) regardless of stimulus contrast (Sclar and Freeman 1982; Skottun et al. 1987; Anderson et al. 2000; Alitto and Usrey 2004). In the present study, we now show that orientation tuning is also invariant to temporal frequency. Taken together, these results suggest that orientation tuning is likely optimized for a common computational task and/or constrained by similar ecological or economical demands. Along these lines, the filtering properties of cortical neurons, including orientation tuning, appear well matched for the statistics of natural scenes (Field 1987; Olshausen and Field 1996; van Hateren and van der Schaaf 1998; Simoncelli and Olshausen 2001; Kording et al. 2004).

Unlike orientation tuning, direction selectivity is influenced by temporal frequency. Similar to results from the cat (Saul and Humphrey 1992; see also Holub and Morton-Gibson 1981; Reid 1988; Reid et al. 1991; McLean and Palmer 1994), we show that direction selectivity of neurons in ferret visual cortex often decreases at high temporal frequencies—for some neurons, even to the point of reversal in preferred direction. Our results also show that direction selectivity often decreases with temporal frequencies below the preferred, an effect not reported previously for adult animals, but one that has been shown in young animals (Saul and Feidler 2002). Although the cellular mechanisms that underlie temporal-frequency variant direction selectivity are unknown, it seems likely that the temporal frequency of a stimulus affects the timing and strength of synaptic inputs—both excitatory and inhibitory—such that temporal
summation and spike generation are altered (Saul and Humphrey 1992; Chance et al. 1998; Krukowski and Miller 2001; Buchs and Senn 2002; Carandini et al. 2002; Priebe and Ferster 2003).

In a well-established model of direction selectivity, direction selectivity emerges as a result of converging inputs from non-direction selective neurons that have 90° (quadrature) spatiotemporal phase differences (Adelson and Bergen 1985; Watson and Ahumada 1985). While neurons in the visual cortex of macaque monkeys have been identified that display the appropriate phase relationship of the quadrature model (De Valois and Cottaris 1998; De Valois et al. 2000), similar neurons have not been found in cat visual cortex (Peterson et al. 2004). A recent study has shown, however, that the phase relationship required for quadrature can be met if one includes inputs from the LGN, presumably from neurons with lagged responses (Peterson et al. 2004). With that in mind, timing differences between lagged and nonlagged neurons in the adult cat LGN are known to decrease with increasing temporal frequency over the range of temporal frequencies that also decrease direction selectivity of cortical neurons (Saul and Humphrey 1992). If lagged LGN inputs indeed provide the necessary phase difference for quadrature, then the effects of temporal frequency on LGN timing might be the basis for the effects of temporal frequency on direction selectivity. Finally, in models of direction selectivity that incorporate synaptic depression, one can adjust the input parameters to produce a decrease in direction selectivity similar to that reported in the current study for stimuli drifting at both high and low temporal frequencies (see Figure 5 in Chance et al. 1998).

Perceptual correlates

Our finding that orientation tuning of cortical neurons is invariant to temporal frequency while direction selectivity is variant, raises the question: are there perceptual correlates of these
neuronal properties? While this line of inquiry is certainly speculative, results from a number of psychophysical studies are consistent with the response properties reported here for ferret V1 neurons. In a series of psychophysical experiments, Snowden (1992) reports that estimates of orientation-tuning bandwidth based on perceptual discrimination are not affected by temporal frequency (but see Sharpe and Tolhurst 1973). This result is dependent on the spatial frequency of the stimulus, however, as estimates of orientation-tuning bandwidth are reported to increase with temporal frequency when subjects are shown low spatial frequency stimuli (Snowden 1992; but see Phillips and Wilson 1984). Since all of the recordings in the present study were made using each neuron’s preferred spatial frequency, it is unknown whether or not temporal frequency has an influence on orientation tuning at low spatial frequencies. With this caveat, our finding that individual neurons in primary visual cortex display temporal-frequency invariant orientation tuning is consistent with psychophysical results and suggests a link between neuronal activity in primary visual cortex and perceptual performance.

Results from studies examining the influence of temporal frequency on direction sensitivity in humans are also consistent with our findings. In humans, measures of detection and discrimination of motion are band-pass for temporal frequency (Derrington and Henning 1993; Gegenfurtner and Hawken 1995), indicating that perception may follow neuronal activity in primary visual cortex. Finally, for a subset of neurons in the present study, the preferred direction of drifting gratings actually reverses at low and/or high temporal frequencies. Similarly, Purves et al. (1996) reports that human observers often experience a weakening and reversal of periodic stimuli shown at high and low temporal frequencies. It is tempting to suggest that this effect—likened to the wagon wheel illusion (but see Pakarian and Yasamy, 2003)—may also find its roots in the activity of neurons in primary visual cortex.
Acknowledgements: We thank Ken Britten, Bruno Olshausen, David Warland, and Farran Briggs for insightful discussions during the course of this project and Kelly Henning and Daniel Sperka for expert technical assistance. This work was supported by NIH grants EY13588, EY12576, EY15387, the McKnight Foundation, the Esther A. and Joseph Klingenstein Fund, and the Alfred P. Sloan Foundation.
References

PETERSON MR, LI B, FREEMAN RD. The derivation of direction selectivity in the striate cortex.

PURVES D, PAYDARFAR JA, ANDREWS TJ. The wagon wheel illusion in movies and reality.

Proc Natl Acad Sci, USA 93: 3693-3697, 1996.

REID RC, ALONSO JM. Specificity of monosynaptic connections from thalamus to visual cortex.

Figure Legends

Figure 1. Temporal-frequency tuning in ferret primary visual cortex. A and B. Temporal-frequency tuning curves for 2 representative simple cells with band-pass index values of 0.52 and 1.0. C. Average tuning curve for 14 simple cells. D and E. Temporal-frequency tuning curves for 2 representative complex cells with band-pass index values of 0.26 and 0.95. F. Average tuning curve for 18 complex cells. Black lines indicate the cubic spline fit; gray lines indicate the SEM. G. Distribution of band-pass index values for the entire set of cortical neurons (n=32). Most neurons display band-pass temporal frequency tuning. H. Distribution of temporal-frequency bandwidths for those neurons (n=26) with responses that dropped to at least 50% at temporal frequencies below and above the preferred. I. Mean temporal frequencies measured at each of the five ranks used in this study— TF(20L), TF(50L), TF(preferred), TF(50H), and TF(20H). Across the population, mean temporal frequencies for the 5 ranks were 0.93 +/- 0.10 Hz, 1.6 +/- 0.14 Hz, 3.47 +/- 0.54 Hz, 6.68 +/- 0.58 Hz, and 10.05 +/- 0.75 Hz, respectively. Median values were 0.5 Hz, 1.5 Hz, 3.5 Hz, 7.8 Hz, and 14.5 Hz, respectively.

Figure 2. Orientation tuning in ferret primary visual cortex. A. Orientation-tuning bandwidth is determined by fitting each neuron’s response (black circles) to a Gaussian distribution (red line) and assessing the half-width at half-height (=1.17 x σ). B. Distribution of orientation-tuning half-width measures for 32 cortical neurons using gratings drifting at each neuron’s preferred temporal frequency. Bandwidth measures are not significantly different for simple and complex cells.

Figure 3. Orientation tuning curves from 4 representative cortical neurons at five different temporal frequencies. Orientation tuning at the preferred temporal frequency is indicated in
green. Orientation tuning at TF(20L) and TF(50L) are indicated by blue dashed and blue solid lines, respectively. Orientation tuning at TF(20H) and TF(50H) are indicated by red dashed and red solid lines, respectively. A, C, and D. Tuning curves from 3 neurons that are strongly direction selective at the preferred temporal frequency and less selective for direction at non-preferred temporal frequencies. B. Tuning curves from a neuron that lacks direction selectivity at all temporal frequencies.

Figure 4. Orientation-tuning is invariant to temporal frequency. A-D. Scatter plots showing the relationship between each neuron’s orientation-tuning half-width at the preferred temporal frequency and the half-width at temporal frequencies corresponding to TF(50L), TF(20L), TF(50H), and TF(20H). Simple cells indicated with circles; complex cells indicated with crosses. E. Histogram showing the mean half-width for orientation tuning at all temporal frequencies examined. Across the population, there is not a significant effect of temporal frequency on orientation tuning half-width.

Figure 5. Influence of temporal frequency on direction selectivity. A. Diagram illustrating the comparison made between “peak 1” and “peak 2” responses from a representative neuron’s orientation-tuning curve. B-F. Scatter plots showing the relationship between peak 1 and peak 2 responses to gratings drifting at each neurons preferred temporal frequency and temporal frequencies corresponding to TF(50L), TF(20L), TF(50H), and TF(20H). Simple cells indicated with circles; complex cells indicated with crosses. Gray line indicates unit slope; dashed line indicates the linear fit of data points. Note that distributions shift towards unit slope for all non-preferred temporal frequencies. Points above unit slope represent neurons with a reversal in preferred direction.
Figure 6. Influence of temporal frequency on the direction index of cortical neurons.

A. Diagram illustrating the method for calculating the direction index.

B. Histogram showing the distribution of direction index values at the preferred temporal frequency.

C-F. Histograms showing the distribution of direction index values at temporal frequencies corresponding to TF(50L), TF(20L), TF(50H), and TF(20H). Negative values represent neurons with a reversal in preferred direction.

G. Mean direction index values for each of the five temporal frequencies examined. Across the population, direction index values are greatest at the preferred temporal frequency and progressively less at temporal frequencies above and below the preferred.

Figure 7. Cumulative probability distribution showing the relationship between direction index and firing rate for cells stimulated with drifting gratings that varied in either temporal frequency (gray line, n=14 cells) or contrast (black line, n=10 cells). For cells studied under conditions of varying temporal frequency, a contrast of 70% was used; for cells studied under conditions of varying contrast, the preferred temporal frequency was used. All cells contributing to this analysis had direction index values of 0.5 or greater at the preferred temporal frequency and high contrast condition. For each cell, the relationship between firing rate and direction index was quantified as the slope of the best fitting line (see inset). The slopes of the two populations were significantly different from each other (p<0.01, Wilcoxin rank sum test) indicating that influence of temporal frequency on direction index is not simply due to changes in firing rate.
Figure 1 - Moore et al.
Figure 2 – Moore et al.
Figure 3 – Moore et al.
Figure 4 – Moore et al.
Figure 5 – Moore et al.
Figure 6 – Moore et al.
Figure 7